Innovative Tools for Molecular and Cell Biology

Innovative Tools for Molecular and Cell Biology

Products

Vectors for Expression of Human Chaperone Fusion Proteins

Expression of EGFP Fusion Proteins for the Investigation of the Chaperones

Vector map of pG-20-hCaf1B

Vector map of pG-20-hCaf1B

Chaperones involved in H3 accumulation and incorporation in telomeric, centric and pericentric chromatin

Features

  • Ready-to-use vectors for live cell imaging
  • Large selection of genes
  • Sequence-documented vectors
  • Applications include localization, binding, and protein-protein interaction studies
  • Experimentally approved

Description

  • Molecular chaperones are proteins that assist the non-covalent folding or unfolding, and the assembly or disassembly of other macromolecular structures. Histone chaperones are a group of proteins that bind histones and regulate nucleosome assembly. In general, histone chaperones can be classified as either H3-H4 or H2A-H2B chaperones based on their preferential histone binding. In addition to canonical histones, a unique histone chaperone may exist for each histone variant (e.g., DAXX and HIRA for H3.3, CAF1 for H3.1). Histone chaperones participate in distinct steps of nucleosome assembly. Some histone chaperones, such as Nap1, help to shuttle newly synthesized histones from the cytoplasm to the nucleus, while others, such as NASP, act as histone reservoirs and regulate histone supply, or, such as RbAp46 and Asf1, directly regulate the enzymatic activity of histone-modifying enzymes. Further histone chaperones are directly involved in the deposition of histones onto DNA for nucleosome assembly. MoBiTec offers expression vectors coding for human chaperone proteins in fusion with EGFP. Most of the fusion proteins can be expressed either with N- or C-terminal EGFP-tag. The cipher in the vector name indicates the linker length of the fusion proteins (e.g., for vector pG-20-hCaf1B the linker length is 20 amino acids).

Application

  • The chaperone EGFP fusion proteins can be used in modern fluorescence microscopy techniques to determine
    1. localization,
    2. binding,
    3. dynamics, and, when a second color is available,
    4. protein-protein interactions and
    5. protein-protein proximities
  • applying fluorescence methods like FRET, FRAP, FCS, RICS, FCCS, and F3H.

Please note:

  • For FRET analysis we suggest fusion proteins with short linker.

ORDER INFORMATION

  • For shipping and storage information please click on Order#.

Caf1B

Order# Description Amount Price Data Sheet
VS-CHV00001 pG-20-hCaf1B 15 ug 453,00 PDF

HJURP

Order# Description Amount Price Data Sheet
VS-CHV00021 pG-20-hHJURP 15 ug 453,00 PDF
VS-CHV00022 phHJURP-15-G 15 ug 453,00 PDF

Mis18BP1

Order# Description Amount Price Data Sheet
VS-CHV00041 pG-20-hMis18BP1 15 ug 453,00 PDF
VS-CHV00042 phMis18BP1-15-G 15 ug 453,00 PDF

SSRP1

Order# Description Amount Price Data Sheet
VS-CHV00061 pG-20-hSSRP1 15 ug 453,00 PDF
VS-CHV00062 phSSRP1-15-G 15 ug 453,00 PDF
  • All prices are in EURO excl. VAT and shipping. For further pricing and order information please ask your local distributor.

Literature

  • Avvakumov N., Nourani A., and Cote J. (2011): Histone Chaperones: Modulators of Chromatin Marks. Mol Cell. 2011 Mar 4;41(5):502-14. Pubmed
  • Barnhart, M.C., Kuich P. H J. L., Stellfox,M.E., Ward J.A., Bassett E.A. Black B.E.,and Foltz D.R. (2011): HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol. 2011 Jul 25;194(2):229-43. Pubmed
  • Corpet, A., and Almouzni, G. (2009): Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol. 2009 Jan;19(1):29-41. Pubmed
  • Dunleavy E.M., Roche D., Tagami H., Lacoste N., Ray-Gallet D., Nakamura Y., Daigo Y., Nakatani Y., & Almouzni-P. G. (2009): HJURP Is a Cell-Cycle-Dependent Maintenance and Deposition Factor of CENP-A at Centromeres. Cell. 2009 May 1;137(3):485-97. Pubmed
  • Filipescu D., Szenker E. & Almouzni G. (2013): Developmental roles of histone H3 variants and their chaperones. Trends Genet. 2013 Nov;29(11):630-40. Pubmed
  • Foltz D.R., Jansen L. E.T., Bailey A. O. Yates J. R., III. Bassett E. A., Wood S. Black B. E. & Cleveland D. W. (2009): Centromere-Specific Assembly of CENP-A Nucleosomes Is Mediated by HJURP. Cell. 2009 May 1;137(3):472-84. Pubmed
  • Fujita Y., Hayashi, T., Kiyomitsu T., Toyoda Y., Kokubu A., Obuse C. & and Yanagida M (2007): Priming of Centromere for CENP-A Recruitment by Human hMis18a, hMis18b, and MIS18BP1. Dev Cell. 2007 Jan;12(1):17-30. Pubmed
  • Hamiche A., Shuaib M. (2013): Chaperoning the histone H3 family. Biochim Biophys Acta. 2013 Mar-Apr;1819(3-4):230-7. Pubmed
  • Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M (2004): Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell. 2004 Sep 17;118(6):715-29. Pubmed
  • Jansen L.E., Black B.E., Foltz D.R., and Cleveland D.W. (2007): Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol. 2007 Mar 12;176(6):795-805. Pubmed
  • Maddox PS, Hyndman F, Monen J, Oegema K, Desai A (2007): Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol. 2007 Mar 12;176(6):757-63. Pubmed
  • Salomoni P. (2013): The PML-interacting protein DAXX: histone loading gets into the picture. Front Oncol. 2013 Jun 7;3:152. Pubmed
  • Wang J., , Liu X., , Dou Z., Chen L., Jiang H., , Fu C., , Fu G., , Liu D., Zhang J., Zhu T., , Fang J, Zang J.,, Cheng J., , Teng M., , Ding X. & Yao X. (2014): Mitotic Regulator Mis18β Interacts with and Specifies the Centromeric Assembly of Molecular Chaperone Holliday Junction Recognition Protein (HJURP). J Biol Chem. 2014 Mar 21;289(12):8326-36. Pubmed