
The SURE Gene Expression System for *Bacillus subtilis*

Contents

1. Introduction	3
2. Strains and Plasmids of the SURE System	6
3. Growth Conditions	7
4. Transformation of <i>Bacillus subtilis</i>	8
4.1. Preparation of Competent Bacillus subtilis Cells	8
4.2. Transformation of Competent Bacillus subtilis Cells	8
5. Media and Solutions	9
6. Preparation of Subtilin for Induction	10
7. Activation of the spaS / spaSmut Promoter by Subtilin	10
8. Sample Analysis for Intracellular Proteins	10
9. Vector Maps	11
10. References	15
11. Order Information, Shipping and Storage	16
12. Related Products	16
13. Contact and Support	16

1. Introduction

Gram-positive bacteria are well known for their contributions to agricultural, medical and food biotechnology and for the production of recombinant proteins. Among them, *Bacillus subtilis* has been developed as an attractive host because of several reasons:

- *Bacillus subtilis* is non-pathogenic and is considered as a GRAS organism (generally regarded as safe).
- There is no significant bias in codon usage.
- It is capable of secreting functional extracellular proteins directly into the culture medium (at present, about 60% of the commercially available enzymes are produced by *Bacillus* species).
- A large body of information concerning transcription, translation, protein folding and secretion mechanisms, genetic manipulation and large-scale fermentation has been acquired.

Subtilin is a small peptide antibiotic of 32 amino acids produced by *Bacillus subtilis*. Subtilin production and regulation is encoded in the chromosome by a cluster of 9 genes that are transcribed from two promoters. Subtilin regulates/activates its own biosynthesis via a two component regulatory system.

For the **SURE** system, **SU**btilin Regulated gene Expression, developed by the company **NIZO food research bv** (The Netherlands), the genes of the regulatory components called SpaR (response regulator) and SpaK (membrane sensor histidine kinase) were isolated and placed on the chromosome of a *B. subtilis* host strain. One of the subtilin-regulated promoters is located upstream of a multiple cloning site into which the gene of interest can be cloned (*gene* X). Figure 1 shows the basic components of the **SURE** system.

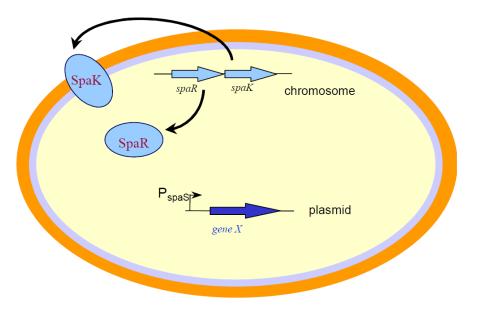


Figure 1: Components of the SURE system, further explained in Fig. 2

Upon addition of subtilin the system is activated and the protein or interest is produced. It accumulates either intracellularly (blue), or is secreted (green) into the medium (see Figure 2).

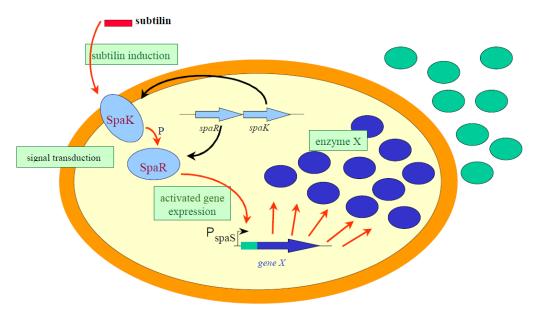
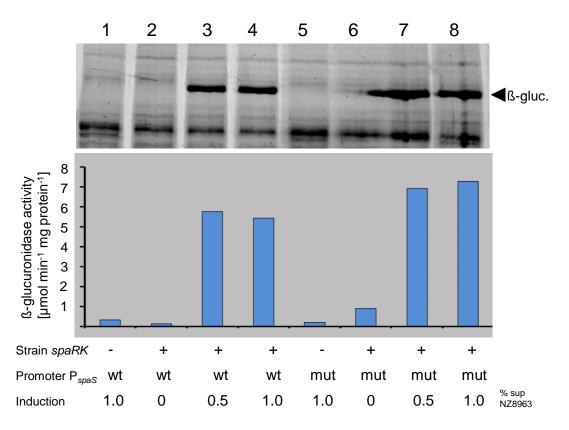


Figure 2: Induction of gene expression in SURE after addition of subtilin to the culture (P = Phosphorylation)

Advantages of SURE:

- Tightly controlled gene expression in a bacterium with long history of biotechnology
- Genome sequence available (Kunst et al., 1997)
- Longstanding genetic engineering experience
- Complete set of genetic engineering tools available
- Potentially useful for cloning of genes with toxic products
- Can be used for the identification of essential genes after insertion into the chromosome upstream of the gene in question
- Potential for secretion of gene products
- Controlled gene expression for metabolic engineering


Bacillus subtilis sequence information: http://genolist.pasteur.fr/SubtiList/

Further resources:

- The Bacillus subtilis centered wiki <u>SubtiWiki</u>: A community-curated consensual annotation that is continuously updated
- <u>SubtiPathways</u> is a model of *Bacillus subtilis* metabolism and regulation in SBML/SBGN (Systems Biology Markup Language/ Graphical Notation).

Example:

Expression of the intracellular reporter gene β -glucuronidase (GUS) of *Escherichia coli* in *Bacillus subtilis*:

Figure 3: GUS expression in *B. subtilis* using the **SURE** system. 0.5 % and 1.0 %, respectively, of the supernatant of a subtilin producing strain NZ8963 were added. The figure shows both the SDS-PAGE analysis and an activity assay of the expression of the *gusA* gene of *E. coli in B. subtilis*. The plasmids pNZ8904 and pNZ8906 correlate to the plasmids pNZ8911 and pNZ8910 with the *gusA* gene coupled to the *spaS* promoter as translational fusion, respectively. Lanes: (1) Control strain NZ8901 + pNZ8904, (2) – (4) NZ8900 + pNZ8904, (5) Control strain NZ8901 + pNZ8906, (6) – (8) NZ8900 + pNZ8906; induction is indicated in % (vol/vol) of supernatant of strain NZ8963

First experiments have been conducted which show that **SURE** can also be used for the secretion of proteins. Corresponding products will be added once available.

In addition to the SURE gene expression system for *Bacillus subtilis*, MoBiTec offers further expression systems for *Bacillus subtilis*, as well as for *Bacillus megaterium*, *Lactococcus lactis*, yeast, and other prokaryotic and eukaryotic hosts. Please visit our website <u>http://www.mobitec.com</u> for details, or contact us at <u>info@mobitec.com</u>.

2. Strains and Plasmids of the SURE System

Plasmids	Remarks			
pNZ8901	SURE expression vector, P <i>spaS</i> mut, Cm ^R High promoter activity, but some leakage Suitable for the production of non-toxic proteins.			
pNZ8911	SURE expression vector, PspaS, CmRNo promoter activity without subtilininduction, lower expression thanPspaSmut. Suitable for the production ofpotentially toxic proteins.			
pNZ8902	SURE expression vector, P <i>spaS</i> mut, Em ^R High promoter activity, but some leakage. Suitable for the production of non-toxic proteins.			
pNZ8910	SURE expression vector, P <i>spaS</i> , Em ^R Some promoter leakage without subtilin induction, caused by the vector; lower expression than pNZ8911.			

Strains		Remarks	
E. coli	MC1061	Intermediate cloning host (6). F ⁻ araD139 Δara-leu)7696 Δ(lac)X74 galU galK hsdR2 mcrA mcrB1 rspL	
Bacillus subtilis	NZ8963	Wild type, subtilin producing strain (ATCC 6633)	
	NZ8900	Bacillus subtilis 168 strain with spaR and spaK integrated into the chromosome at the amyE locus. Host strain for subtilin inducible gene expression in <i>B. subtilis.</i> amyE::spaRK, Km ^R	
	NZ8901	<i>B. subtilis</i> 168 with kanamycin gene integrated into the chromosome at the <i>amyE</i> locus. Negative control strain. 168, <i>amyE</i> ::Km ^R	

Storage and handling of plasmids

Plasmids are supplied lyophilized. Upon receipt, add 100 μ l distilled water or buffer (10 mM Tris/HCL pH8.5) to a final concentration of 0.1 μ g/ μ l and incubate at 50 °C for 5 minutes. Vortex for 1 minute and store at -20 °C. Please note that all plasmids of this system are *E. coli* / *B. subtilis* shuttle vectors. We recommend *E. coli* MC1061 for plasmids deriving from Gram-positive bacteria.

Storage and handling of *Bacillus* strains

The *Bacillus* strains are supplied as frozen cultures and shipped on dry ice. Store the stock at -80 °C. For propagation remove tube from freezer, scratch off some material from the surface of the frozen stock using a sterile loop. Replace stock immediately. Streak cell material onto an LB plate, seal the plate with parafilm and incubate at 37 °C overnight. *Bacillus* plates can be stored at 4 °C for 1 month. Use fresh bacteria for transformation.

3. Growth Conditions

Detailed protocols for *E. coli* and *Bacillus* molecular genetic handling (growth, transformation, etc.) can be found in the relevant laboratory manuals such as Sambrook and Russell (2001).

B. subtilis and *E. coli* can be grown aerobically at 37 °C in 2xYT medium (Bagyan *et al.*, 1998). Under optimal conditions the doubling time of *E. coli* is 20 min and of *B. subtilis* 30 min.

2xYT medium:

16 g tryptone

10 g yeast extract

5 g sodium chloride (NaCl)

Add distilled water to 1000 ml, autoclave at 121 °C for 15 min

Antibiotics:	<i>B. subtilis</i> chloramphenicol erythromycin kanamycin	(5 μg/ml) (5 μg/ml) (10 μg/ml)	<i>E. coli</i> chloramphenicol erythromycin	(10 μg/ml), (150 μg/ml)
--------------	--	--------------------------------------	---	----------------------------

Order#	Product	Amount
CB-J902-500GAM	2xYT medium broth	500 g
CB-J859-500GAM	tryptone	500 g
CB-J851-500GAM	casamino acids	500 g
CB-0241-1KGAM	sodium chloride (NaCl)	1 kg
CB-0230-100GAM	chloramphenicol	100 g
0219-10GAM	erythromycin	10 g
0408-10GAM	kanamycin sulfate	10 g
J637-500GAM	agar, bacteriological	500 g

4. Transformation of *Bacillus subtilis*

Detailed protocols for *E. coli* and *Bacillus* molecular genetic handling (growth, transformation, etc.) can be found in the relevant laboratory manuals such as Sambrook and Russell (2001).

The following protocol is adopted from Klein et al., 1992.

4.1. Preparation of Competent Bacillus subtilis Cells

- Overnight culture of the appropriate recipient cells in 5 ml HS medium at 37 °C
- Inoculate 50 ml HS medium with 0.5 ml of the overnight culture; incubate under vigorous shaking at 37 °C
- Record the growth curve
- Take samples of 10 ml each when cells reach the stationary phase at 15 min intervals
- Add 1 ml of sterile glycerol (87%), mix and leave for 15 min on ice
- Fractionate into 1 ml aliquots, freeze in liquid nitrogen and store at -80 °C
- Check one aliquot from each time point with a reference plasmid DNA (see below) to identify the time point(s) yielding high level competent cells; discard the non- or low competent aliquots

4.2. Transformation of Competent Bacillus subtilis Cells

- Thaw one aliquot at 37 °C
- Use these cells to inoculate 20 ml LS medium
- Shake cells slowly in a 30 °C water bath to obtain maximal competence (about 2 h)
- Take 1 ml aliquots into a glass tube or a 2 ml plastic reaction tube, add 10 µl of 0.1 M EGTA (CB-0732-10GAM), and incubate for 5 min at room temperature
- Add plasmid or chromosomal DNA and incubate for 2 h at 37 °C while well shaking (well mixing is important when using plastic reaction tubes)
- If glass tubes were used, transfer cell suspension into a 2 ml plastic reaction tube
- Centrifuge, discard supernatant carefully, and resuspend the cells in the residual liquid remaining on the pellet
- Plate on selective 2xYT medium (see page 7)
- Incubate at 37 °C overnight

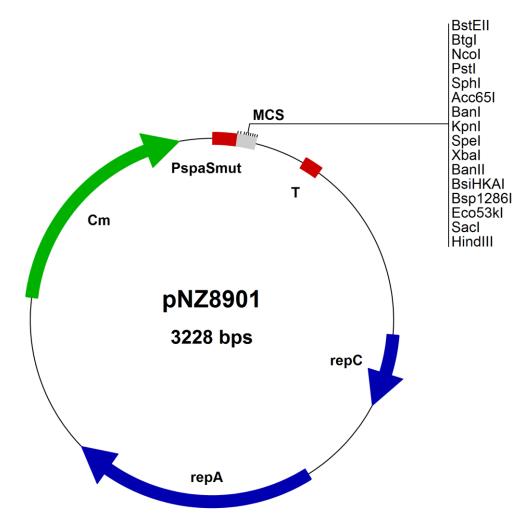
Page 9

5. Media and Solutions

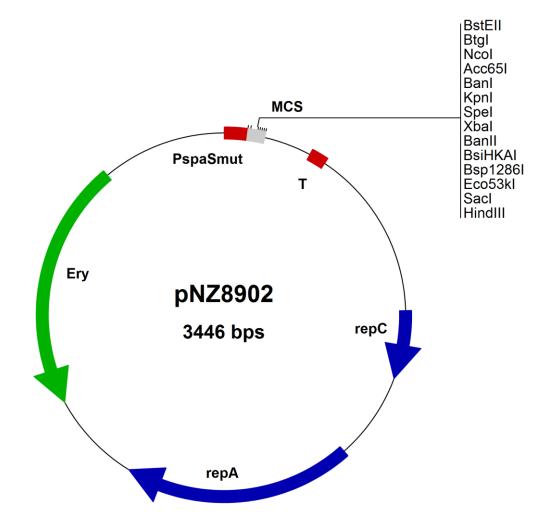
10x S-base (Spizizen's salt):		$(NH_4)_2SO_4$ K_2HPO_4 KH_2PO_4 sodium citrate illed water to 100 ml and autoclave ml 1M MgSO ₄ after autoclaving
HS medium:		distilled water 10x S-base 20 % (w/v) glucose 0.1 % (w/v) L-tryptophan 2 % (w/v) casein 10 % (w/v) yeast extract (Difco) 8 % (w/v) arginine, 0.4 % histidine ve all components separately han solution: sterile filtration
LS medium:		distilled water 10x S-base 20 % (w/v) glucose 0.1 % (w/v) L-tryptophan 2 % (w/v) casein 2 % (w/v) yeast extract (Difco) 1 mM MgCl ₂ 1 mM CaCl ₂ ave all components separately han solution: sterile filtration
0.1 M EGTA	adjust the p	3 g EGTA in 50 ml distilled water oH to 7.2 using 10 N NaOH d water to 100 ml; autoclave

- Inoculate fresh overnight culture of *B. subtilis* NZ8963 into fresh 2xYT medium at an optical density at 600 nm (OD₆₀₀) of 0.15
- Collect supernatant at culture OD₆₀₀ = 1.0 and heat for 10 min at 80 °C to eliminate residual living *B. subtilis* NZ8963 cells

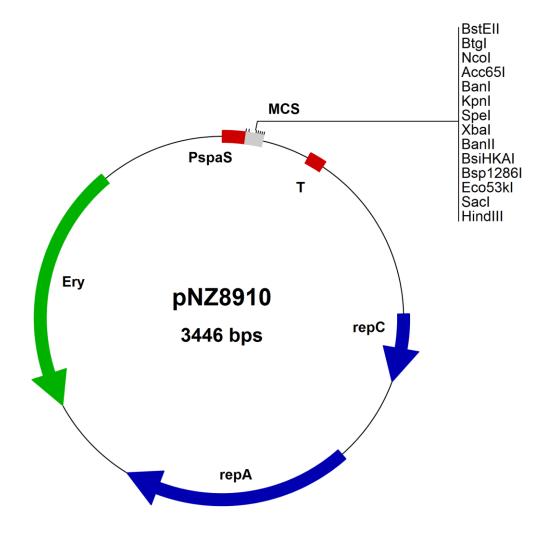
7. Activation of the *spaS / spaS*mut Promoter by Subtilin

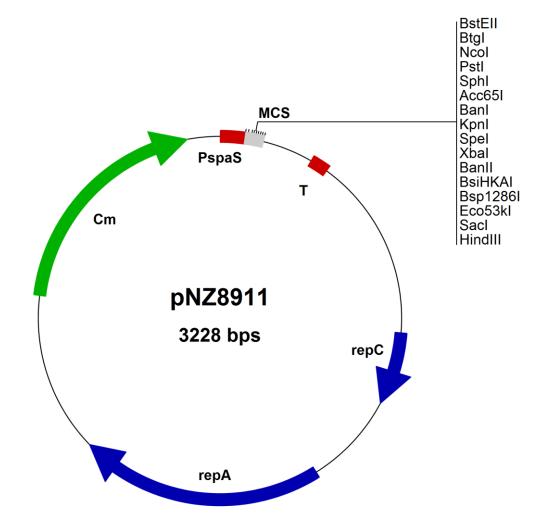

- Grow the appropriate *B. subtilis* strain overnight in fresh 2xYT medium
- Inoculate into fresh 2xYT medium to an OD₆₀₀ of 0.15
- When culture reaches OD₆₀₀ 0.7 0.8, split into 2 portions and add supernatant of the fresh overnight culture of NZ8963 to one portion (optimum amount to be determined empirically. Suggested range 0.1, 0.2, 0.5, 1, 1.5, 2 % (v/v))
- Take samples at different time points for analysis

8. Sample Analysis for Intracellular Proteins


- Harvest cells by centrifugation (10 min, 6,000 x g, 4 °C)
- Wash and resuspend in 50 mM sodium phosphate buffer (pH 7.0) at an OD₆₀₀ of 10
- Disrupt cells by ultrasonication (12 W, 6 x 15 pulses with 15 sec intervals) in 1.5 ml reaction tubes containing 1 ml of cell suspension, supplemented with lysozyme (250 µg/ml, CB-0663-5GAM), on ice
- Alternatively, cells can be disrupted by bead beating: disrupt three times with glass beads (0.1 mm in diameter) (1 g/ml of cell suspension) in an orbital mixer at 180 V, with the mix kept on ice for 3 min between each disruption
- Remove cell debris (and glass beads) by centrifugation at 430 x g, 10 min, 4 °C
- Use the amount of protein corresponding to 0.025 of OD₆₀₀ per sample for separation by SDS-PAGE

9. Vector Maps


High-resolution maps and sequences of the vectors are available at www.mobitec.com


Туре	Name	Start	Stop	Description
Promoter	PspaSmut	1	79	Subtilin-regulated promoter
				(high expression activity)
Terminator	Т	270	322	
Region	MCS	71	124	Multiple Cloning Site
Gene	repC	849	1058	Replication gene C
Gene	repA	1327	2025	Replication gene A
Selectable	Cm	2485	3135	Chloramphenicol resistance
Genetic Marker				(B.subtilis /E.coli)

Туре	Name	Start	Stop	Description
Promoter	PspaSmut	1	79	Subtilin-regulated promoter
				(high expression activity)
Terminator	Т	270	322	
Region	MCS	71	124	Multiple Cloning Site
Gene	repC	849	1058	Replication gene C
Gene	repA	1327	2025	Replication gene A
Selectable	Ery	3064	2309	Erythromycin resistance
Genetic Marker				(B.subtilis / E.coli)

Туре	Name	Start	Stop	Description
Promoter	PspaS	1	79	Subtilin-regulated promoter
				(medium expression activity)
Terminator	Т	270	322	
Region	MCS	71	124	Multiple Cloning Site
Gene	repC	849	1058	Replication gene C
Gene	repA	1327	2025	Replication gene A
Selectable	Ery	3064	2309	Erythromycin resistance
Genetic Marker	-			(B.subtilis / E.coli)

Туре	Name	Start	Stop	Description
Promoter	PspaS	1	79	Subtilin-regulated promoter
				(medium expression activity)
Terminator	Т	270	322	
Region	MCS	71	124	Multiple Cloning Site
Gene	repC	849	1058	Replication gene C
Gene	repA	1327	2025	Replication gene A
Selectable	Cm	2485	3135	Chloramphenicol resistance
Genetic Marker				(B.subtilis /E.coli)

10. References

General references:

Bagyan, I., Casillas-Martinez, L. and Setlow, P. (1998). The *katX* Gene, Which Codes for the Catalase in Spores of *Bacillus subtilis*, Is a Forespore-Specific Gene Controlled by ς F, and KatX Is Essential for Hydrogen Peroxide Resistance of the Germinating Spore; J Bacteriol. 180(8), 2057–2062

Klein, C., Kaletta, C., Schnell, N. and Entian K.-D. (1992). Analysis of Genes Involved in Biosynthesis of the Lantibiotic Subtilin; Applied and Environmental Microbiology, Jan. 1992, 132-142

F. Kunst, N. Ogasawara, I. Moszer, <146 other authors>, H. Yoshikawa, A. Danchin (1997). The complete genome sequence of the Gram-positive bacterium *Bacillus subtilis*; Nature 390, 249-256

Sambrook, J. and Russel, D.W. (2001) Molecular Cloning: A laboratory manual

References on SURE:

1. Bongers, R. S., J. W. Veening, M. Van Wieringen, O. P. Kuipers, and M. Kleerebezem (2005) Development and characterization of a subtilin-regulated expression system in *Bacillus subtilis*: strict control of gene expression by addition of subtilin; Applied and Environmental Microbiology 71, 8818-8824

2. **Kleerebezem, M**. (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis; Peptides 25, 1405-1414

3. Kleerebezem, M., R. Bongers, G. Rutten, W. M. de Vos, and O. P. Kuipers (2004) Autoregulation of subtilin biosynthesis in *Bacillus subtilis*: the role of the spa-box in subtilinresponsive promoters; Peptides 25, 1415-1424

4. **Mierau, I., and M. Kleerebezem** (2005) 10 years of the nisin-controlled gene expression system (NICE) in *Lactococcus lactis*; Applied Microbiology and Biotechnology 9, 1-13

11. Order Information, Shipping and Storage

Order#	Product	Amount
VS-ELS10610-01	NICE [®] /SURE <i>E. coli</i> host Strain MC1061	1 ml
PBS023	Bacillus subtilis strain NZ8963	1 ml
PBS024	Bacillus subtilis strain NZ8900	1 ml
PBS025	Bacillus subtilis strain NZ8901	1 ml
PBS031	pNZ8901 vector, lyophilized plasmid DNA	10 µg
PBS032	pNZ8902 vector, lyophilized plasmid DNA	10 µg
PBS033	pNZ8910 vector, lyophilized DNA	10 µg
PBS034	pNZ8911 vector, lyophilized DNA	10 µg

Plasmids are shipped at room temperature (RT), strains on dry ice. Lyophilized plasmid DNA can be stored at 4 °C. We recommend storage at -20 °C, once the DNA has been dissolved in sterile water or buffer.

12. Related Products

Order#	Product	Amount
CB-J902-500GAM	2xYT medium broth	500 g
CB-J859-500GAM	tryptone	500 g
CB-J851-500GAM	casamino acids	500 g
CB-0241-1KGAM	sodium chloride (NaCl)	1 kg
CB-0230-100GAM	chloramphenicol	100 g
0219-10GAM	erythromycin	10 g
0408-10GAM	kanamycin sulfate	10 g
CB-0339-25GAM	ampicillin sodium salt	25 g
CB-0663-5GAM	lysozyme, egg white	5 g
0732-10GAM	EGTA	10 g
J637-500GAM	agar, bacteriological	500 g

13. Contact and Support

MoBiTec GmbH ◆ Lotzestrasse 22a ◆ D-37083 Goettingen ◆ Germany

Customer Service – General inquiries & orders	Technical Service – Product information
phone: +49 (0)551 707 22 0	phone: +49 (0)551 707 22 70
fax: +49 (0)551 707 22 22	fax: +49 (0)551 707 22 77
e-mail: order@mobitec.com	e-mail: info@mobitec.com
MoBiTec in your area: Find your local distributor at	www.mobitec.com